الحث الكهرومغناطيسي الفورمولا والوحدات ، وكيف يعمل والأمثلة



ال الحث الكهرومغناطيسي يتم تعريفه على أنه تحريض القوة الدافعة الكهربائية (الجهد) في وسط أو جسم قريب بسبب وجود مجال مغناطيسي متغير. اكتشف هذه الظاهرة الفيزيائي والكيميائي البريطاني مايكل فاراداي ، خلال عام 1831 ، بموجب قانون فاراداي للتحريض الكهرومغناطيسي.

أجرى فاراداي اختبارات تجريبية مع مغناطيس دائم محاط بملف من الأسلاك ولاحظ تحريض الجهد على الملف المذكور ، وتداول التيار الأساسي.

يشير هذا القانون إلى أن الجهد الناتج عن حلقة مغلقة يتناسب طرديا مع معدل التغير في التدفق المغناطيسي عند عبور السطح ، فيما يتعلق بالوقت. وبالتالي ، فمن الممكن للحث على وجود فرق الجهد (الجهد) على الجسم المجاور بسبب تأثير الحقول المغناطيسية المتغيرة.

بدوره ، فإن هذا الجهد المستحث يؤدي إلى تداول تيار يقابل الجهد المستحث ومقاومة كائن التحليل. هذه الظاهرة هي مبدأ عمل أنظمة الطاقة وأجهزة الاستخدام اليومي ، مثل: المحركات ، المولدات والمحولات الكهربائية ، أفران الحث ، المحاثات ، البطاريات ، إلخ..

مؤشر

  • 1 الصيغة والوحدات
    • 1.1 الصيغة
    • 1.2 وحدة القياس
  • 2 كيف يعمل؟?
  • 3 أمثلة
  • 4 المراجع

الصيغة والوحدات

تم تشارك الحث الكهرومغناطيسي الذي لاحظه فاراداي في عالم العلوم من خلال النمذجة الرياضية التي تسمح بتكرار هذا النوع من الظواهر والتنبؤ بسلوكها.

صيغة

لحساب المعلمات الكهربائية (الجهد ، الحالي) المرتبطة بظاهرة الحث الكهرومغناطيسي ، يجب علينا أولاً تحديد ما هي قيمة الحث المغناطيسي ، والمعروفة حاليًا باسم المجال المغناطيسي.

لمعرفة ما هو التدفق المغناطيسي الذي يعبر سطحًا معينًا ، يجب حساب ناتج الحث المغنطيسي حسب المنطقة المذكورة. على النحو التالي:

حيث:

Φ: التدفق المغناطيسي [Wb]

ب: الحث المغناطيسي [T]

S: السطح [م2]

يشير قانون فاراداي إلى أن القوة الدافعة الكهربائية المستحثة في الأجسام المحيطة تُعطى بمعدل تغير التدفق المغناطيسي فيما يتعلق بالوقت ، على النحو المفصل أدناه:

حيث:

ε: القوة الدافعة الكهربائية [V]

عند استبدال قيمة التدفق المغناطيسي في التعبير السابق ، لدينا ما يلي:

إذا تم تطبيق التكاملات على جانبي المعادلة من أجل تحديد مسار محدد للمنطقة المرتبطة بالتدفق المغناطيسي ، يتم الحصول على تقريب أكثر دقة للحساب المطلوب.

بالإضافة إلى ذلك ، فإن حساب القوة الدافعة الكهربائية في دائرة مغلقة محدود أيضًا بهذه الطريقة. وبالتالي ، عند تطبيق التكامل في كلا أعضاء المعادلة ، يتم الحصول على ما يلي:

وحدة القياس

يتم قياس الحث المغناطيسي في النظام الدولي للوحدات (SI) في تيسلاس. تمثل وحدة القياس هذه بالحرف T ، وتتوافق مع مجموعة الوحدات الأساسية التالية.

تسلا تساوي الحث المغناطيسي للشخصية الموحدة التي تنتج تدفق المغناطيسي من 1 ويبر على سطح متر مربع واحد.

وفقًا لنظام Cegesimal of Units (CGS) ، فإن وحدة قياس الحث المغنطيسي هي غاوس. علاقة التكافؤ بين كلتا الوحدتين هي كما يلي:

1 تسلا = 10 000 غاوس

تدين وحدة قياس الحث المغناطيسي باسم المهندس والفيزيائي والمخترع الصربي الكرواتي نيكولا تسلا. تم تسميته بهذه الطريقة في منتصف عام 1960.

كيف يعمل?

يطلق عليه الحث لأنه لا يوجد اتصال مادي بين العناصر الأولية والثانوية ؛ وبالتالي ، كل شيء يحدث من خلال اتصالات غير مباشرة وغير ملموسة.

تحدث ظاهرة الحث الكهرومغناطيسي في ضوء تفاعل خطوط القوة لحقل مغناطيسي متغير على الإلكترونات الحرة لعنصر موصل قريب.

لهذا الغرض ، يجب ترتيب الكائن أو الوسيلة التي يحدث فيها الاستقراء بشكل عمودي فيما يتعلق بخطوط قوة المجال المغناطيسي. بهذه الطريقة ، تكون القوة التي تمارس على الإلكترونات الحرة أكبر ، وبالتالي فإن الحث الكهرومغناطيسي أقوى بكثير.

بدوره ، يتم إعطاء اتجاه دوران التيار المستحث بواسطة الاتجاه المعطى بواسطة خطوط قوة المجال المغناطيسي المتغير.

من ناحية أخرى ، هناك ثلاث طرق يمكن من خلالها تغيير تدفق المجال المغناطيسي لإحداث قوة دافعة كهربائية على جسم أو جسم قريب:

1- قم بتعديل وحدة المجال المغناطيسي ، عن طريق الاختلافات في كثافة التدفق.

2- قم بتغيير الزاوية بين المجال المغناطيسي والسطح.

3- تعديل حجم السطح المتأصل.

بعد ذلك ، بمجرد تعديل الحقل المغنطيسي ، يتم تحفيز القوة الدافعة الكهربائية في الكائن المجاور والتي ، وفقًا لمقاومة التدفق الحالي الذي يمتلكه (مقاومة) ، ستنتج تيارًا مستحثًا.

وفقًا لترتيب الأفكار هذا ، ستكون نسبة هذا التيار المستحث أكبر أو أقل من الأساسي ، اعتمادًا على التكوين الفعلي للنظام.

أمثلة

مبدأ الحث الكهرومغناطيسي هو أساس تشغيل محولات الجهد الكهربائي.

يتم إعطاء نسبة التحويل لمحول الجهد (المخفض أو المصعد) من خلال عدد اللفات التي لدى كل لف المحول.

وبالتالي ، اعتمادًا على عدد الملفات ، يمكن أن يكون الجهد في الثانوية أعلى (محول تصعيدي) أو أقل (محول تنحي) ، اعتمادًا على التطبيق داخل النظام الكهربائي المترابط.

بطريقة مماثلة ، تعمل التوربينات المولدة للكهرباء في المراكز الكهرومائية أيضًا بفضل الحث الكهرومغناطيسي.

في هذه الحالة ، تحرك شفرات التوربين محور الدوران الموجود بين التوربين والمولد. ثم ، وهذا يؤدي إلى تعبئة الدوار.

بدوره ، يتكون الدوار من سلسلة من اللفات التي ، عندما تكون في الحركة ، تؤدي إلى مجال مغناطيسي متغير.

يستحث هذا الأخير قوة دافعة كهربائية في الجزء الثابت للمولد ، وهو متصل بنظام يسمح بنقل الطاقة المولدة خلال العملية عبر الإنترنت..

من خلال المثالين أعلاه ، من الممكن اكتشاف كيف يعد الحث الكهرومغناطيسي جزءًا من حياتنا في التطبيقات الأولية للحياة اليومية.

مراجع

  1. الحث الكهرومغناطيسي (s.f.). تم الاسترجاع من: electronics-tutorials.ws
  2. الحث الكهرومغناطيسي (s.f.). تم الاسترجاع من: nde-ed.org
  3. اليوم في التاريخ 29 أغسطس 1831: اكتشف الحث الكهرومغناطيسي. تم الاسترجاع من: mx.tuhistory.com
  4. مارتين ، ت. ، وسيرانو ، أ. الحث المغناطيسي جامعة البوليتكنيك في مدريد. مدريد ، اسبانيا تم الاسترجاع من: montes.upm.es
  5. Sancler، V. (s.f.). الحث الكهرومغناطيسي تم الاسترجاع من: euston96.com
  6. ويكيبيديا ، الموسوعة الحرة (2018). تسلا (وحدة). تم الاسترجاع من: en.wikipedia.org